C-C Bond Formation in Syngas Conversion over Zinc Sites Grafted on ZSM-5 Zeolite

Angew Chem Int Ed Engl. 2020 Apr 16;59(16):6529-6534. doi: 10.1002/anie.201912869. Epub 2020 Feb 25.

Abstract

Despite significant progress achieved in Fischer-Tropsch synthesis (FTS) technology, control of product selectivity remains a challenge in syngas conversion. Herein, we demonstrate that Zn2+ -ion exchanged ZSM-5 zeolite steers syngas conversion selectively to ethane with its selectivity reaching as high as 86 % among hydrocarbons (excluding CO2 ) at 20 % CO conversion. NMR spectroscopy, X-ray absorption spectroscopy, and X-ray fluorescence indicate that this is likely attributed to the highly dispersed Zn sites grafted on ZSM-5. Quasi-in-situ solid-state NMR, obtained by quenching the reaction in liquid N2 , detects C2 species such as acetyl (-COCH3 ) bonding with an oxygen, ethyl (-CH2 CH3 ) bonding with a Zn site, and epoxyethane molecules adsorbing on a Zn site and a Brønsted acid site of the catalyst, respectively. These species could provide insight into C-C bond formation during ethane formation. Interestingly, this selective reaction pathway toward ethane appears to be general because a series of other Zn2+ -ion exchanged aluminosilicate zeolites with different topologies (for example, SSZ-13, MCM-22, and ZSM-12) all give ethane predominantly. By contrast, a physical mixture of ZnO-ZSM-5 favors formation of hydrocarbons beyond C3+ . These results provide an important guide for tuning the product selectivity in syngas conversion.

Keywords: NMR spectroscopy; hydrocarbons; zeolites; zinc.