Lotus-Leaf-Inspired Flexible and Tunable Random Laser

ACS Appl Mater Interfaces. 2020 Feb 26;12(8):10050-10057. doi: 10.1021/acsami.9b23524. Epub 2020 Feb 12.

Abstract

We describe herein a flexible and tunable random laser made from a flexible poly(dimethylsiloxane) substrate. The substrate is prepared by casting via soft lithography from a lotus leaf to produce a micropapilla surface structure similar to that of a lotus leaf. The micropapilla provides efficient multiple scattering for the photons generated in the gain medium, and random lasing emerges because photons undergo closed-loop paths by scattering from three equilaterally arranged micropapillae. Given the diverse distribution of microscale features on the soft substrate, the random laser spectrum can be tuned by as much as 26.0 nm by changing the pump position. Furthermore, the random laser can be easily tuned by about 14 nm by flexing it, which modifies the micropapilla density and thereby changes the reabsorption strength of the laser dye. The photostability of the random laser is ensured by sealing the gain medium (i.e., dye solution) in a closed system. The results provide a promising method to realize a variety of laser-based applications such as optical biosensors on chips, microscale structural alteration detectors, flexible wearable devices, and multicolor (even white) random lasers.

Keywords: flexible; lotus leaf; multiple scattering; nanocasting; random laser; tunable.