Prenatal Testosterone Exposure Disrupts Insulin Secretion And Promotes Insulin Resistance

Sci Rep. 2020 Jan 15;10(1):404. doi: 10.1038/s41598-019-57197-x.

Abstract

Hyperandrogenemia and metabolic disturbances during postnatal life are strongly linked both to polycystic ovary syndrome and other conditions that arise from prenatal exposure to androgen excess. In an animal model of this condition, we reported that insulin sensitivity (IS) was lower in young female sheep born to testosterone-treated mothers versus sheep born to non-exposed mothers (control). This lower insulin sensitivity remains throughout reproductive life. However, it is unknown whether abnormal postnatal levels of testosterone (T) further decrease IS derived from prenatal exposure to testosterone. Therefore, we assessed the effects of an acute testosterone administration (40 mg) on IS and insulin secretion during an intravenous glucose tolerance test performed at 40 weeks of age (adulthood) in previously ovariectomized sheep at 26 weeks of age (prepuberty), that were either prenatally exposed to testosterone (T-females, n = 6) or not (C-females, n = 6). The incremental area under the curve of insulin was greater in C-females both with or without the acute testosterone treatment (P < 0.05). The ISI-Composite was lower after an acute testosterone treatment, only in T-females. We conclude that prenatal exposure to testosterone disrupts pancreatic insulin secretion in response to glucose and that in this setting further hyperandrogenemia may predispose to lower insulin sensitivity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Embryonic Development / drug effects*
  • Female
  • Insulin Resistance*
  • Insulin Secretion / drug effects*
  • Pregnancy
  • Prenatal Exposure Delayed Effects / chemically induced
  • Prenatal Exposure Delayed Effects / metabolism
  • Prenatal Exposure Delayed Effects / pathology*
  • Sheep
  • Testosterone / adverse effects*

Substances

  • Testosterone