Anaerobic Soil Disinfestation Reduces Viability of Sclerotinia sclerotiorum and S. minor Sclerotia and Root-Knot Nematodes in Muck Soils

Phytopathology. 2020 Apr;110(4):795-804. doi: 10.1094/PHYTO-10-19-0386-R. Epub 2020 Mar 3.

Abstract

Experiments were conducted to evaluate potential functional and mechanistic differences in the suppression of Sclerotinia sclerotiorum and S. minor and root-knot nematodes in muck soils by anaerobic soil disinfestation (ASD) using different carbon source amendments. Volatile compounds produced during ASD in muck soil amended with molasses, wheat bran, or mustard greens at 20.2 Mg/ha or a 2% ethanol solution significantly reduced the mycelial growth and number of sclerotia produced by both Sclerotinia spp. compared with the anaerobic control. In amended soils, acetic and butyric acids were detected in concentrations that reduced the viability of sclerotia of both pathogens. Higher concentrations of carbon dioxide were observed in ASD-treated soils, regardless of the amendment, than in the nonamended anaerobic control. Only amendment with wheat bran did not increase the production of methane gas during ASD compared with the controls. Meloidogyne hapla survival was completely suppressed in soils treated with ASD regardless of carbon source. Field trials were conducted in Ohio muck soil to assess survival of sclerotia of both Sclerotinia spp. The viability of sclerotia of both Sclerotinia spp. was significantly reduced in soil subjected to ASD amended with wheat bran (20.2 Mg/ha), molasses (10.1 Mg/ha), or wheat bran (20.2 Mg/ha) plus molasses (10.1 Mg/ha) compared with the controls. A consistent negative correlation between soil reduction and viability of sclerotia of both pathogens was observed. Wheat bran and molasses are both widely available amendments that can be used as ASD carbon sources for the management of soilborne pathogens in muck soils.

Keywords: biological control; mycology; nematology.

MeSH terms

  • Anaerobiosis
  • Animals
  • Ascomycota*
  • Ohio
  • Plant Diseases
  • Soil Microbiology
  • Soil*

Substances

  • Soil