MET promotes the proliferation and differentiation of myoblasts

Exp Cell Res. 2020 Mar 15;388(2):111838. doi: 10.1016/j.yexcr.2020.111838. Epub 2020 Jan 10.

Abstract

The receptor tyrosine kinase MET plays a vital role in skeletal muscle development and in postnatal muscle regeneration. However, the effect of MET on myogenesis of myoblasts has not yet been fully understood. This study aimed to investigate the effects of MET on myogenesis in vivo and in vitro. Decreased myonuclei and down-regulated expression of myogenesis-related markers were observed in Met p.Y1232C mutant heterozygous mice. To explore the effects of MET on myoblast proliferation and differentiation, Met was overexpressed or interfered in C2C12 myoblast cells through the lentiviral transfection. The Met overexpression cells exhibited promotion in myoblast proliferation, while the Met deficiency cells showed impediment in proliferation. Moreover, myoblast differentiation was enhanced by the stable Met overexpression, but was impaired by Met deficiency. Furthermore, this study demonstrated that SU11274, an inhibitor of MET kinase activity, suppressed myoblast differentiation, suggesting that MET regulated the expression of myogenic regulatory factors (MRFs) and of desmin through the classical tyrosine kinase pathway. On the basis of the above findings, our work confirmed that MET promoted the proliferation and differentiation of myoblasts, deepening our understanding of the molecular mechanisms underlying muscle development.

Keywords: C2C12; MET; Myoblast; Myogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation*
  • Cell Proliferation*
  • Cells, Cultured
  • Mice
  • Muscle Development*
  • Myoblasts / cytology*
  • Myoblasts / metabolism
  • Proto-Oncogene Proteins c-met / metabolism*

Substances

  • Proto-Oncogene Proteins c-met