Total disc arthroplasties alter the characteristics of the instantaneous helical axis of the cervical functional spinal units C3/C4 and C5/C6 during flexion and extension in in vitro conditions

J Biomech. 2020 Feb 13:100:109608. doi: 10.1016/j.jbiomech.2020.109608. Epub 2020 Jan 7.

Abstract

Total disc arthroplasty (TDA) increases the risk of adjacent segment disease (ASD). Kinematic analyses are necessary to compare the intact condition (IC) with alterations after TDA to develop better prostheses. A well-established 6D measuring apparatus (resolution < 2.4 μm; 400 positions/cycle) was used. Kinematics of the flexion and extension of 8 human cervical spine segments (cFSU) C3/C4 and C5/C6 (67.9 ± 13.2 y) were analyzed in the IC and after TDA (Bryan® Cervical Disc [B-TDA], Prestige LP® Cervical Disc [P-TDA]). The migration of the instantaneous helical axis (IHA) and the stiffness of the segments were calculated. Analyses demonstrated a stretched U-curved IHA migration in the sagittal plane. The IHA positions were significantly more cranial in cFSU C5/C6 than in C3/C4 in IC and after either TDA (IC: p < 0.001; B-TDA: p = 0.001; P-TDA: p = 0.045). In cFSU C3/C4 IHA positions shifted anteriocranially after either TDA (p < 0.001). In cFSU C5/C6, the IHA positions were significantly more anterocranial after B-TDA than in IC and after P-TDA (anterior: p < 0.001; cranial: p = 0.005). After B-TDA, the IHA migration path length was significantly longer in cFSU C3/C4 than in C5/C6 (p = 0.007) and longer than in IC in both cFSU (C3/C4: p = 0.047; C5/C6: p < 0.001). Stiffness was increased after both TDA. Various kinematic alterations were observed after both TDA. Increased translation and IHA position shifting after both TDA might indicate abnormal strain and a derogated benefit of TDA. These results imply the most abnormal strain after B-TDA. The lower cFSU might be more susceptible to alterations after TDA than the upper cFSU.

Keywords: Cervical spine; Flexion/extension; Instantaneous helical axis; Kinematics; Total disc arthroplasty.

MeSH terms

  • Biomechanical Phenomena
  • Cervical Vertebrae / physiology*
  • Female
  • Humans
  • Male
  • Mechanical Phenomena*
  • Prostheses and Implants
  • Total Disc Replacement*