Formation Dynamics of Excited Neutral Nitrogen Molecules inside Femtosecond Laser Filaments

Phys Rev Lett. 2019 Dec 13;123(24):243203. doi: 10.1103/PhysRevLett.123.243203.

Abstract

Nitrogen molecules are promoted to excited neutral states during femtosecond laser pulse filamentary propagation in atmosphere, leading to a characteristic UV fluorescence. Using a laser-induced fluorescence depletion technique, we measure the formation dynamics of these excited neutral nitrogen molecules with femtosecond time resolution. We find that the excited neutral molecules are formed in an unexpected ultrafast timescale of ∼4 ps at 1 bar and ∼120 ps at 30 mbar pressure. From this observation we deduce that the excitation of neutral N_{2} occurs via multiple collisions with hot free electrons. Numerical simulations based on rate equations reproduce well this ultrafast formation time and its dependence on gas pressure, and thus support this interpretation.