Diastereoselective Synthesis of Steroid-[60]Fullerene Hybrids and Theoretical Underpinning

J Org Chem. 2020 Feb 21;85(4):2426-2437. doi: 10.1021/acs.joc.9b03121. Epub 2020 Jan 22.

Abstract

The reaction of C60 with pregnen-20-carboxaldehyde, a biologically active synthetic steroid, by using a 1,3-dipolar cycloaddition reaction (Prato's protocol) results in the formation of pyrrolidine rings bearing a new stereogenic center on the C2 of the five-membered ring. The formation of the fullerene-steroid hybrids proceeds with preference for the Re face of the 1,3-dipole, with formation of a diastereomeric mixture in 73:15 ratio. The investigation of the chiroptical properties of these conjugates allowed determining the absolute configuration of the new fulleropyrrolidines. In addition, a thorough spectroscopical study permitted to determine the structure of the two mono-cycloadducts. The electrochemical properties of the new hybrids were also evaluated by cyclic voltammetry, both systems exhibit three quasi-reversible reduction waves which are cathodically shifted in regard to the parent C60. Theoretical calculations help supporting the experimental data. A conformational study combining semiempirical methods and density functional theory has predicted the most stable diastereomer. On the basis of this agreement, a possible reaction mechanism is presented. Additionally, a molecular docking simulation has been carried out using the HIV-1 protease as receptor, thus paving the way to study the possible application of these stereoisomers in biomedicine.

Publication types

  • Research Support, Non-U.S. Gov't