Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress

Physiol Plant. 2020 Feb;168(2):511-525. doi: 10.1111/ppl.13064. Epub 2020 Jan 22.

Abstract

Plants often face a variety of abiotic stresses, which affects them negatively and lead to yield loss. The antioxidant system efficiently removes excessive reactive oxygen species and maintains redox homeostasis in plants. With better understanding of these protective mechanisms, recently the concept of hydrogen sulfide (H2 S) and its role in cell signaling has become the center of attention. H2 S has been recognized as a third gasotransmitter and a potent regulator of growth and development processes such as germination, maturation, senescence and defense mechanism in plants. Because of its gaseous nature, H2 S can diffuse to different part of the cells and balance the antioxidant pools by supplying sulfur to cells. H2 S showed tolerance against a plethora of adverse environmental conditions like drought, salt, high temperature, cold, heavy metals and flood via changing in level of osmolytes, malonaldialdehyde, Na+ /K+ uptake, activities of H2 S biosynthesis and antioxidative enzymes. It also promotes cross adaptation through persulfidation. H2 S along with calcium, methylglyoxal and nitric oxide, and their cross talk induces the expression of mitogen activated protein kinases as well as other genes in response to stress. Therefore, it is sensible to evaluate and explore the stress responsive genes involved in H2 S regulated homeostasis and stress tolerance. The current article is aimed to summarize the recent updates on H2 S-mediated gene regulation in special reference to abiotic stress tolerance mechanism, and cross adaptation in plants. Moreover, new insights into the H2 S-associated signal transduction pathway have also been explored.

Publication types

  • Review

MeSH terms

  • Gene Expression Regulation, Plant*
  • Hydrogen Sulfide / metabolism*
  • Plant Physiological Phenomena*
  • Plants
  • Reactive Oxygen Species
  • Signal Transduction*
  • Stress, Physiological*

Substances

  • Reactive Oxygen Species
  • Hydrogen Sulfide