Cantharidic acid induces apoptosis in human nasopharyngeal carcinoma cells through p38-mediated upregulation of caspase activation

Environ Toxicol. 2020 May;35(5):619-627. doi: 10.1002/tox.22897. Epub 2020 Jan 9.

Abstract

Cantharidic acid (CA) is the hydrolysis product of the acid anhydride cantharidin, which is a natural toxin secreted by several species of blister beetles. Several studies have indicated that as an inhibitor of protein phosphatase 2 (PP2A), CA induces apoptosis in various human cancer cells. However, the effect of CA on human nasopharyngeal carcinoma (NPC) cells and the underlying pathways have not been addressed. In our current study, we tested the hypothesis that CA treatment reduces the viability of human NPC cells (HONE-1, NPC-39, and NPC-BM) by inducing apoptosis. Results indicated that CA markedly reduced cell viability, which was revealed by the upregulation of caspase activation in extrinsic and intrinsic apoptosis pathways as well as the upregulation of extracellular-signal-regulated kinase 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase 1/2 (JNK1/2) pathways. Coadministration of a p38 inhibitor (SB203580) with CA abolished the activation of caspase proteins. These findings indicated that CA treatment leads to apoptosis in human NPC cells through the upregulation of caspase activation, mediated particularly by the p38 pathway. Hence, CA is a promising therapeutic agent for human NPC.

Keywords: MAPK; apoptosis; cantharidic acid; caspase; nasopharyngeal carcinoma.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Cantharidin / analogs & derivatives*
  • Cantharidin / pharmacology
  • Caspases / metabolism*
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Humans
  • MAP Kinase Signaling System / drug effects
  • Nasopharyngeal Carcinoma / metabolism
  • Nasopharyngeal Carcinoma / pathology
  • Nasopharyngeal Neoplasms / metabolism
  • Nasopharyngeal Neoplasms / pathology
  • Signal Transduction
  • Transcriptional Activation / drug effects*
  • Up-Regulation
  • p38 Mitogen-Activated Protein Kinases / metabolism*

Substances

  • Antineoplastic Agents
  • cantharidic acid
  • p38 Mitogen-Activated Protein Kinases
  • Caspases
  • Cantharidin