Sensitivity programmable ratiometric electrochemical aptasensor based on signal engineering for the detection of aflatoxin B1 in peanut

J Hazard Mater. 2020 Apr 5:387:122001. doi: 10.1016/j.jhazmat.2019.122001. Epub 2019 Dec 30.

Abstract

Accurately monitoring of aflatoxin B1 (AFB1), the most hazardous mycotoxin in agricultural products, is essential for the public health, but various testing demands (e.g. detection range, sensitivity) for different samples can be challenging for sensors. Here, we developed a sensitivity-programmable ratiometric electrochemical aptasensor for AFB1 analysis in peanut. Thionine functionalized reduced graphene oxide (THI-rGO) served as reference signal generator, ferrocene-labelled aptamer (Fc-apt) output the response signal. During analysis, the formation of Fc-apt-AFB1 complex led to its stripping from the electrode and faded the current intensity of Fc (IFc), while the current intensity of THI (ITHI) was enhanced. And ratiometric detection of AFB1 was achieved by using the current intensity ratio (ITHI/IFc) as quantitative signal. Compared with ratiometric strategies that highly rely on the labelled aptamers, the proposed strategy could regulate the value of ITHI/IFc by changing the modification of Fc-apt. And the detection sensitivity was found to be closely related to ITHI/IFc. Under the optimal conditions, the fabricated aptasensor with a dynamic range from 0.05-20 ng mL-1 and a detection limit of 0.016 ng mL-1 for AFB1 analysis. Besides, it exhibited excellent selectivity, reliability and reproducibility. The proposed sensitivity-programmable biosensor can be applied to detect various aptamer-recognized mycotoxins in agricultural sensing.

Keywords: Aflatoxin B1; Hazardous materials; Programmable sensitivity; Ratiometric electrochemical aptasensor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aflatoxin B1 / analysis*
  • Aflatoxin B1 / chemistry
  • Aptamers, Nucleotide / chemistry*
  • Arachis / chemistry
  • Base Sequence
  • Biosensing Techniques / methods*
  • Electrochemical Techniques / methods*
  • Ferrous Compounds / chemistry
  • Food Contamination / analysis*
  • Gold / chemistry
  • Graphite / chemistry
  • Limit of Detection
  • Metal Nanoparticles / chemistry
  • Metallocenes / chemistry
  • Phenothiazines / chemistry
  • Reproducibility of Results

Substances

  • Aptamers, Nucleotide
  • Ferrous Compounds
  • Metallocenes
  • Phenothiazines
  • graphene oxide
  • Gold
  • Graphite
  • Aflatoxin B1
  • ferrocene
  • thionine