Application of diffusion tensor tractography in the surgical treatment of brain tumors located in functional areas

Oncol Lett. 2020 Jan;19(1):615-622. doi: 10.3892/ol.2019.11167. Epub 2019 Nov 29.

Abstract

The present study aimed to explore the application of diffusion tensor tractography (DTT) in the preoperative planning and prognostic evaluation of tumors located in the functional areas of the brain. A total of 42 patients diagnosed with intracranial tumors were randomly assigned to either the trial or the control group. DT imaging (DTI) was performed on the basis of preoperative conventional magnetic resonance imaging (MRI) and analyzed for patients in the trial group. Patients in the control group underwent only routine MRI scans. The effect of DTT on the prognosis of patients was evaluated by tumor resection rate and quality of life evaluation using Karnofsky performance score (KPS) comparison between the trial and control groups. There were no significant differences for total tumor removal rate in the trial group (85.71%) compared with that in the control group (71.43%) (P>0.05). The rate of postoperative symptom improvement in the trial group (85.71%) was significantly higher compared with that in the control group (47.62%) (P<0.05). The KPS value of the trial group was significantly higher postoperatively (78.57±17.40) compared with that preoperatively (66.67±16.23) (P<0.05). The KPS value of the control group postoperatively (72.38±19.21) was significantly higher compared with that preoperatively (66.67±16.00) (P<0.05). The postoperative KPS improvement rate [postoperative value-preoperative value)/preoperative value] of the trial group was significantly higher compared with that in the control group. In conclusion, the use of DTT is an effective supplement to traditional MRI, with particular relevance in preoperative planning, particularly for tumors in the functional area of the brain, and can significantly improve the prognostic function of patients.

Keywords: diffusion tensor fiber tract imaging; functional brain tumor; preoperative planning; prognostic evaluation.