Rational Design of a P2-Type Spherical Layered Oxide Cathode for High-Performance Sodium-Ion Batteries

ACS Cent Sci. 2019 Dec 26;5(12):1937-1945. doi: 10.1021/acscentsci.9b00982. Epub 2019 Dec 6.

Abstract

Sodium-ion batteries (SIBs) have been regarded as the most promising candidates for the next-generation energy storage devices owing to their low price and high abundance. However, the development of SIBs is mainly hindered by the instability of cathode materials. Here, we report a new P2-type manganese-rich cathode material, Na0.66Li0.18Mn0.71Mg0.21Co0.08O2 (P2-NaLiMMCO) with uniform spherical structure prepared via a simple solvothermal method and subsequent solid-state reaction. This P2-NaLiMMCO cathode material with uniform microsize secondary spheres and nanosize primary crystalline particles delivers a high initial discharge capacity of 166 mA h g-1 and superior capacity retention, which are superior to most previously reported results. The improved stability of the cathode material was further investigated by the in situ X-ray diffraction technique, which suggests an enhanced reversibility of the cathode material during the desodiation/sodiation process. With the superior electrochemical performance and stable structures, this new P2-NaLiMMCO can serve as a practical cathode material for SIBs.