Preventing Anion Exchange between Perovskite Nanocrystals by Confinement in Porous SiO2 Nanobeads

ACS Omega. 2019 Dec 11;4(26):22209-22213. doi: 10.1021/acsomega.9b03524. eCollection 2019 Dec 24.

Abstract

All-inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (NCs) are highly attractive due to their outstanding optical and electrical properties. However, poor stability and easy anion exchanges between CsPbX3 nanocrystals with different halides limit their applications in light-emitting diodes (LEDs). To solve the problems, we developed an approach to in situ synthesize CsPbX3 NCs into porous silica colloidal spheres, which can effectively prevent anion exchange and increase photo stability. Based on our results, we first proved that the anion exchange between CsPbX3 nanocrystals is mainly driven by physical collision of the nanocrystals, not requiring a bridge such as a solvent. We subsequently used an optimized ratio of green, red, and blue SiO2/CsPbX3 composites as solid-state luminescent materials to fabricate single-layer white light-emitting diodes (WLEDs). No anion exchanges have been observed in the LED fabrication and lighting process.