Novel and Automatic Rice Thickness Extraction Based on Photogrammetry Using Rice Edge Features

Sensors (Basel). 2019 Dec 16;19(24):5561. doi: 10.3390/s19245561.

Abstract

The dimensions of phenotyping parameters such as the thickness of rice play an important role in rice quality assessment and phenotyping research. The objective of this study was to propose an automatic method for extracting rice thickness. This method was based on the principle of binocular stereovision but avoiding the problem that it was difficult to directly match the corresponding points for 3D reconstruction due to the lack of texture of rice. Firstly, the shape features of edge, instead of texture, was used to match the corresponding points of the rice edge. Secondly, the height of the rice edge was obtained by way of space intersection. Finally, the thickness of rice was extracted based on the assumption that the average height of the edges of multiple rice is half of the thickness of rice. According to the results of the experiments on six kinds of rice or grain, errors of thickness extraction were no more than the upper limit of 0.1 mm specified in the national industry standard. The results proved that edge features could be used to extract rice thickness and validated the effectiveness of the thickness extraction algorithm we proposed, which provided technical support for the extraction of phenotyping parameters for crop researchers.

Keywords: crop phenotyping; digital image processing; photogrammetry; rice grain; thickness.