Environmental temperature and human epigenetic modifications: A systematic review

Environ Pollut. 2020 Apr:259:113840. doi: 10.1016/j.envpol.2019.113840. Epub 2019 Dec 19.

Abstract

The knowledge about the effects of environmental temperature on human epigenome is a potential key to understand the health impacts of temperature and to guide acclimation under climate change. We performed a systematic review on the epidemiological studies that have evaluated the association between environmental temperature and human epigenetic modifications. We identified seven original articles on this topic published between 2009 and 2019, including six cohort studies and one cross-sectional study. They focused on DNA methylation in elderly people (blood sample) or infants (placenta sample), with sample size ranging from 306 to 1798. These studies were conducted in relatively low temperature setting (median/mean temperature: 0.8-13 °C), and linear models were used to evaluate temperature-DNA methylation association over short period (≤28 days). It has been reported that short-term ambient temperature could affect global human DNA methylation. A total of 15 candidate genes (ICAM-1, CRAT, F3, TLR-2, iNOS, ZKSCAN4, ZNF227, ZNF595, ZNF597, ZNF668, CACNA1H, AIRE, MYEOV2, NKX1-2 and CCDC15) with methylation status associated with ambient temperature have been identified. DNA methylation on ZKSCAN4, ICAM-1 partly mediated the effect of short-term cold temperature on high blood pressure and ICAM-1 protein (related to cardiovascular events), respectively. In summary, epidemiological evidence about the impacts of environment temperature on human epigenetics remains scarce and limited to short-term linear effect of cold temperature on DNA methylation in elderly people and infants. More studies are needed to broaden our understanding of temperature related epigenetic changes, especially under a changing climate.

Keywords: Climate change; Epidemiology; Epigenetics; Systematic review; Temperature.

Publication types

  • Systematic Review

MeSH terms

  • Age Factors
  • Cross-Sectional Studies
  • DNA Methylation*
  • Environment*
  • Epigenesis, Genetic*
  • Humans
  • Temperature*