Diversity, Virulence Factors, and Antifungal Susceptibility Patterns of Pathogenic and Opportunistic Yeast Species in Rock Pigeon (Columba livia) Fecal Droppings in Western Saudi Arabia

Pol J Microbiol. 2019 Dec;68(4):493-504. doi: 10.33073/pjm-2019-049. Epub 2019 Dec 5.

Abstract

Bird fecal matter is considered a potential source of pathogenic microbes such as yeast species that contaminate the environment. Therefore, it needs to be scrutinized to assess potential environmental health risks. The aim of this study was to investigate the diversity of the yeasts in pigeon fecal droppings, their antifungal susceptibility patterns, and virulence factors. We used culturing techniques to detect the yeasts in pigeon fecal droppings. The isolates were then characterized based on colony morphologies, microscopic examinations, and biochemical reactions. The molecular identification of all yeast isolates was performed by sequencing of the amplified ITS gene. Genes encoding virulence factors CAP1, CAP59, and PLB were also detected. Antifungal susceptibility patterns were examined by the disk diffusion method. A total of 46 yeast-like isolates were recovered, and they belonged to nine different genera, namely, Cryptococcus, Saccharomyces, Rhodotorula, Candida, Meyerozyma, Cyberlindnera, Rhodosporidium, Millerozyma, and Lodderomyces. The prevalence of two genera Cryptococcus and Rhodotorula was high. None of the yeast isolates exhibited any resistance to the antifungal drugs tested; however, all pathogenic Cryptococcus species were positive for virulence determinants like urease activity, growth at 37°C, melanin production, the PLB and CAP genes. This is the first report on the molecular diversity of yeast species, particularly, Cryptococcus species and their virulence attributes in pigeon fecal droppings in Saudi Arabia.

Bird fecal matter is considered a potential source of pathogenic microbes such as yeast species that contaminate the environment. Therefore, it needs to be scrutinized to assess potential environmental health risks. The aim of this study was to investigate the diversity of the yeasts in pigeon fecal droppings, their antifungal susceptibility patterns, and virulence factors. We used culturing techniques to detect the yeasts in pigeon fecal droppings. The isolates were then characterized based on colony morphologies, microscopic examinations, and biochemical reactions. The molecular identification of all yeast isolates was performed by sequencing of the amplified ITS gene. Genes encoding virulence factors CAP1, CAP59, and PLB were also detected. Antifungal susceptibility patterns were examined by the disk diffusion method. A total of 46 yeast-like isolates were recovered, and they belonged to nine different genera, namely, Cryptococcus, Saccharomyces, Rhodotorula, Candida, Meyerozyma, Cyberlindnera, Rhodosporidium, Millerozyma, and Lodderomyces. The prevalence of two genera Cryptococcus and Rhodotorula was high. None of the yeast isolates exhibited any resistance to the antifungal drugs tested; however, all pathogenic Cryptococcus species were positive for virulence determinants like urease activity, growth at 37°C, melanin production, the PLB and CAP genes. This is the first report on the molecular diversity of yeast species, particularly, Cryptococcus species and their virulence attributes in pigeon fecal droppings in Saudi Arabia.

MeSH terms

  • Animals
  • Antifungal Agents / pharmacology
  • Biodiversity
  • Columbidae / microbiology*
  • Feces / microbiology*
  • Fluconazole / pharmacology
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism
  • Microbial Sensitivity Tests
  • Saudi Arabia
  • Virulence Factors / genetics
  • Virulence Factors / metabolism*
  • Yeasts / drug effects*
  • Yeasts / genetics
  • Yeasts / isolation & purification*
  • Yeasts / metabolism

Substances

  • Antifungal Agents
  • Fungal Proteins
  • Virulence Factors
  • Fluconazole