Enhanced all-optical cavity-tuning using graphene

Opt Express. 2019 Nov 11;27(23):34093-34102. doi: 10.1364/OE.27.034093.

Abstract

All-optical tuning of the resonance of an optical cavity is used to realise optical signal-processing including modulation, switching, and signal-routing. The tuning of optical resonance is dictated by the two primary effects induced by optical absorption: charge-carrier-generation and heat-generation. Since these two effects shift the resonance in opposite directions in a pure silicon-on-insulator (SOI) micro-ring resonator as well as in a graphene-on-SOI system, the efficiency and the dynamic range of all-optical resonance-tuning is limited. In this work, in a graphene-oxide-silicon waveguide system, we demonstrate an exceptional resonance-tuning-efficiency of 300 p m/m W (0.055 π/m W), with a large dynamic range of 1.2 n m (0.22 π) from linear resonance to optical bistability. The dynamics of the resonance-tuning indicates that the superior resonance-tuning is due to large linear-absorption-induced thermo-optic effect. Competing free-carrier dispersion is suppressed as a result of the large separation between graphene and the silicon core. This work reveals new ways to improve the performance of graphene-on-waveguide systems in all-optical cavity-tuning, low-frequency all-optical modulation, and switching.