Ultrafast background-free ro-vibrational fs/ps-CARS thermometry using an Yb:YAG crystal-fiber amplified probe

Opt Express. 2019 Nov 11;27(23):32924-32937. doi: 10.1364/OE.27.032924.

Abstract

A novel laser system for ro-vibrational spectroscopy using coherent anti-Stokes Raman Scattering in hybrid fs/ps regime is presented. A single Yb:KGW laser source is used as a master laser to generate the three CARS laser beams, namely the pump and Stokes femtosecond pulses and a 58 ps probe pulse. Master oscillator power amplifier (MOPA) architecture is implemented to increase the probe output power using a custom two stage free space linear amplifier. The probe is 0.37 cm-1 in width and 100 µJ in energy to allow resolving the Q-branch ro-vibrational lines of N2 and recording single shot CARS spectra at kHz repetition rate in flames. An original and simple technique based on the study of the influence of probe delay and polarization has been setup to optimize nonresonant background rejection, with no loss in resonant contribution. CARS performances are reported for N2 thermometry between 300 K and 3000 K, demonstrating state of the art precision.