Synthetic wavelength to increase the snapshot optical sensor's elevated vertical measurement ranges

Appl Opt. 2019 Nov 20;58(33):9051-9058. doi: 10.1364/AO.58.009051.

Abstract

Screening manufactured products that are conducted faster to enhance the contemporary manufacture processes and quality is possible by implementing enhanced quality control. Such quality control of manufactured products has increased the market for process-focused precision metrology that can execute evaluations faster while providing significant feedback for the manufacturing system. This investigation examines spatial dispersive interferometry's potential for producing accurate surface profile measurements by emphasizing vertical range measurements and identifying a system that can enable them to increase incrementally while maintaining the results' quality. Thus, this investigation selected Fourier transform profilometry (FTP) to assess surface profile measurements, as it provides the most reliable and fastest outcome data regarding this sensor. Exploring new surface scanning methods is important, as crucial weaknesses hinder several common approaches. As optical metrology sensors are bulky, difficult to establish, and expensive, the investigation will prove that FTP can resolve these restrictions. The investigation uses the synthetic wavelength approach for addressing vertical measurement limitation concerning optical systems for extending surface step height's vertical measurement range. Though it was observed that the FTP technique surmounts the vertical height limitations, certain limitations were also noted, with all outcomes considering key variables, including the scanning objective lens, system resolution, the spectrometer resolution, and diffraction grating. Future examinations must examine a wider vertical range to expand the snapshot spatial dispersive interferometry process's scope. Further, the step-height repeatability is enhanced, showing a good outcome range from 22 to 20 nm.