High-Brightness and Color-Tunable FAPbBr3 Perovskite Nanocrystals 2.0 Enable Ultrapure Green Luminescence for Achieving Recommendation 2020 Displays

ACS Appl Mater Interfaces. 2020 Jan 15;12(2):2835-2841. doi: 10.1021/acsami.9b18140. Epub 2020 Jan 6.

Abstract

To best catch human eyes in next-generation displays, the updated recommendation 2020 (Rec. 2020) standard has called for ultrapure green emitters to be qualified with a narrow emission of 525-535 nm with a full width at half-maximum (fwhm) below 25 nm. However, it is still challenging to find an emitter which can simultaneously cover these two criteria. Instead of traditional II-VI group semiconductor quantum dots, perovskite nanocrystals (NCs) can render versatile emitting tunability to allow them access to the Rec. 2020 standard. Herein, to realize the critical window of Rec. 2020, we have proposed a scalable, room temperature synthesis route of formamidinium lead bromide (FAPbBr3) NCs using a sole ligand of sulfobetaine-18 (SBE-18). The as-synthesized FAPbBr3 NCs exhibit an ideal emission at 534 nm with an ultranarrow fwhm of 20.5 nm and a high photoluminescence quantum yield of 90.6%, overwhelming the FAPbBr3 nanoplates capped with oleic acid/oleylamine (OA/OAM). Introducing these high quality NCs into backlight displays, an ultrapure green backlight which covers ≈85.7% of the Rec. 2020 standard in the CIE 1931 color space is achieved, signifying the "greenest" backlight till now. Thus, we can foresee perovskite NCs as the most potential candidates for next-generation displays.

Keywords: formamidinium lead bromide nanocrystals; rec. 2020; ultrapure green luminescence; zwitterionic ligands.