Wetland plant litter decomposition occurring during the freeze season under disparate flooded conditions

Sci Total Environ. 2020 Mar 1:706:136091. doi: 10.1016/j.scitotenv.2019.136091. Epub 2019 Dec 12.

Abstract

To investigate the heterogeneity of plant litter decomposition in the freeze and freeze-free seasons and the responses to disparate flooded conditions in seasonally frozen wetlands, in situ simulation experiments of litter decomposition were performed in the Sanjiang Plain, Northeast China. The experiments were conducted using the litter bag method for representative plants, Carex lasiocarpa and Calamagrostis angustifolia, in both non-flooded and flooded areas between November 2011 and November 2013. Heterogeneous effects of the freeze season and its interaction with hydrological regimes on the decomposition of the litter of various species and organs were observed. The litter decomposition occurred during the freeze season and made a significant contribution to the loss throughout the year. The two-year mass-loss of C. lasiocarpa and C. angustifolia and their organs were ordered differently between the freeze season and the freeze-free season. The proportion of litter mass-loss during the freeze season accounting for the whole year in the flooded area were greater than that in the non-flooded area, except for the C. angustifolia root litter. The litter mass-losses of entire C. lasiocarpa and C. angustifolia during the freeze season were greater than those during the freeze-free season in the flooded area, while the pattern was opposite in the non-flooded area. The effect of environmental factors on litter decomposition might override the effects of litter substrate quality. The total N and P of the litter of the entire C. lasiocarpa and entire C. angustifolia increased significantly relative to the initial values after two years and tended to enrich more in the litter under flooded conditions than under non-flooded conditions. The results highlighted the heterogeneous effects of the freeze season and its interaction with hydrological regimes on various species and organs, which would provide management and restoration options for degraded wetlands caused by climate change.

Keywords: Climate change; Flooded conditions; Litter decomposition; Nutrient cycling; Seasonal freeze-thaw wetlands.

MeSH terms

  • Carex Plant
  • China
  • Plant Leaves
  • Poaceae
  • Seasons
  • Wetlands*