Theoretical and Experimental Study of 13.4 kV/55 A SiC PiN Diodes with an Improved Trade-Off between Blocking Voltage and Differential On-Resistance

Materials (Basel). 2019 Dec 12;12(24):4186. doi: 10.3390/ma12244186.

Abstract

In this paper, a 13.4 kV/55 A 4H-silicon carbide (SiC) PiN diode with a better trade-off between blocking voltage, differential on-resistance, and technological process complexity has been successfully developed. A multiple zone gradient modulation field limiting ring (MGM-FLR) for extremely high-power handling applications was applied and investigated. The reverse blocking voltage of 13.4 kV, close to 95% of the theoretical value of parallel plane breakdown voltage, was obtained at a leakage current of 10 μA for a 100 μm thick, lightly doped, 5 × 1014 cm-3 n-type SiC epitaxial layer. Meanwhile, a fairly low differential on-resistance of 2.5 mΩ·cm2 at 55 A forward current (4.1 mΩ·cm2 at a current density of 100 A/cm2) was calculated for the fabricated SiC PiN with 0.1 cm2 active area. The highest Baliga's figure-of-merit (BFOM) of 72 GW/cm2 was obtained for the fabricated SiC PiN diode. Additionally, the dependence of the breakdown voltage on transition region width, number of rings in each zone, as well as the junction-to-ring spacing of SiC PiN diodes is also discussed. Our findings indicate that this proposed device structure is one potential candidate for an ultra-high voltage power system, and it represents an option to maximize power density and reduce system complexity.

Keywords: Baliga’s figure-of-merit; breakdown voltage; field limiting ring; silicon carbide.