Effect of Layer Thickness in Layered Aluminum Matrix Syntactic Foam

Materials (Basel). 2019 Dec 12;12(24):4172. doi: 10.3390/ma12244172.

Abstract

This work experimentally investigates the effect of layered structure on the static and impact response of a new layered syntactic foam developed for impact energy absorption. The layered syntactic foam had the same density of 1.6 g/cm3 and the same components of 50% large spheres (L) and 50% small spheres (S) with different structures from two layers to five layers. The impact response and energy absorption were investigated by drop-weight impact tests. Under static loading, more layers led to higher yield stress and lower energy absorption. There were three types of progressive failures of layered syntactic form under impact loading. The failure propagation was examined and found to be dependent on the layer number and impact energy. Interestingly, layered syntactic foam absorbed more energy than both of its components in terms of ductility. The ductility of layered syntactic foam decreased with the increase in layer number. The peak stress of layered syntactic foam increased with the increase in layer number. Two-layered syntactic foam LS had the highest ductility under 60 J/g impact, as well as an energy absorption of 35 J/g, compared to other layered syntactic foams. Specifically, its component L had a ductility under 70 J/g and an energy absorption of 25 J/g, while component S had a ductility under 10 J/g and an energy absorption of 10 J/g.

Keywords: impact ductility; impact failures; layered syntactic foam; peak stress.