Development of a Novel DNA Oligonucleotide Targeting Low-Density Lipoprotein Receptor

Mol Ther Nucleic Acids. 2020 Mar 6:19:190-198. doi: 10.1016/j.omtn.2019.11.004. Epub 2019 Nov 16.

Abstract

Low-density lipoprotein receptor (LDL-R) is a cell surface receptor protein expressed in a variety of solid cancers, including lung, colon, breast, brain, and liver, and therefore it opens up opportunities to deliver lysosome-sensitive anti-cancer agents, especially synthetic nucleic acid-based therapeutic molecules. In this study, we focused on developing novel nucleic acid molecules specific to LDL-R. For this purpose, we performed in vitro selection procedure via systematic evolution of ligands by exponential enrichment (SELEX) methodologies using mammalian cell-expressed human recombinant LDL-R protein as a target. After 10 rounds of selections, we identified a novel DNA oligonucleotide aptamer, RNV-L7, that can bind specifically to LDL-R protein with high affinity and specificity (KD = 19.6 nM). Furthermore, flow cytometry and fluorescence imaging assays demonstrated efficient binding to LDL-R overexpressed human cancer cells, including Huh-7 liver cancer cells and MDA-MB-231 breast cancer cells, with a binding affinity of ∼200 nM. Furthermore, we evaluated the functional potential of the developed LDL-R aptamer RNV-L7 by conjugating with a previously reported miR-21 targeting DNAzyme for inhibiting miR-21 expression. The results showed that the miR-21 DNAzyme-RNV-L7 aptamer chimera efficiently reduced the expression of miR-21 in Huh-7 liver cancer cells. As currently there are no reports on LDL-R aptamer development, we think that RNV-L7 could be beneficial toward the development of targeted cancer therapeutics.

Keywords: DNAzyme; SELEX; aptamer; aptamer targeted drug delivery; cancer; drug delivery; low-density lipoprotein receptor; miR-21.