Inherent Surface Properties of Adsorbent-Free Ultrathin Bi2Se3 Topological Insulator Platelets

Sci Rep. 2019 Dec 13;9(1):19057. doi: 10.1038/s41598-019-55646-1.

Abstract

We report on a hydrothermal synthesis of hexagonal ultra-thin Bi2Se3 platelets, which was performed without any organic reactants. The synthesis resulted in the particles with a surface, clean of any organic adsorbents, which was confirmed with a high-resolution transmission electron microscopy, zeta-potential measurements and thermogravimetric measurements coupled with a mass spectroscopy. Due to the absence of the adsorbed organic layer on the Bi2Se3 platelet surface, we were able to measure their inherent surface and optical properties. So far this has not been possible as it has been believed that such hexagonal Bi2Se3 platelets can only be prepared by a solvothermal synthesis, for which it was unable to avoid the organic surface layer. Here we explain the mechanism behind the successful hydrothermal synthesis and show a striking difference in zeta potential behaviour and UV-vis absorption characteristics caused by the adsorbed layer. The surface of the hydrothermally synthesized Bi2Se3 platelets was so clean to enable the occurrence of the localized surface plasmon resonance due to the bulk and topological surface electronic states.