Biochar made from low density wood has greater plant available water than biochar made from high density wood

Sci Total Environ. 2020 Feb 25:705:135856. doi: 10.1016/j.scitotenv.2019.135856. Epub 2019 Dec 2.

Abstract

Soil water limitations often restrict plant growth in unirrigated agricultural, forestry and urban systems. Biochar amendment to soils can increase water retention, but not all of this additional water is necessarily available to plants. Differences in the effectiveness of biochar in ameliorating soil water limitations may be a result of differences in feedstock cell structure. Previous research has shown that feedstock cell structure influences the pore structure of biochar and consequently the volume available for water storage. The availability of this water for plant uptake will be determined by biochar pore diameters, given its role in determining capillary forces which plants must overcome to access pore water. Therefore, we hypothesized that differences in hardwood feedstock cell structure would result in differences in the plant available water holding capacity of biochar. Before pyrolysis, we measured the wood morphology of 18 Eucalyptus species on three replicates of equal age on a gradient of wood density (572-960 kg m-3). Wood samples were then pyrolysed (550 °C) and the resulting biochars were sieved and their particle size distribution was standardised before their physical properties, including water holding capacity, plant available water and bulk density were measured. Our results show that biochar made from lower density eucalypt wood had up to 35% greater water holding capacity and up to 45% greater plant available water than biochar made from higher density eucalypt wood. Further, feedstock wood density related well to fibre cell wall thickness and fibre lumen diameter. Therefore, wood density could be used as a proxy for wood cell structure, which can in turn be used to predict plant available water in biochar. The simple measure of feedstock wood density can inform feedstock choices for producing biochars with greater plant available water, optimal for the use as soil amendment in water limited environments.

Keywords: Biochar pore structure; Hardwood; Plant available water; Water holding capacity; Wood cell structure; Wood density.

MeSH terms

  • Charcoal
  • Soil
  • Water
  • Wood*

Substances

  • Soil
  • biochar
  • Water
  • Charcoal