Sensor-based evaluation of maize (Zea mays) and weed response to post-emergence herbicide applications of Isoxaflutole and Cyprosulfamide applied as crop seed treatment or herbicide mixing partner

Pest Manag Sci. 2020 May;76(5):1856-1865. doi: 10.1002/ps.5715. Epub 2020 Jan 13.

Abstract

Background: Some maize post-emergence herbicides obtain their crop/weed selectivity only through the use of chemical crop safeners. Safeners improve the tolerance of maize to herbicidal active ingredients. In order to investigate the crop response to safener (cyprosulfamide) spray application and seed treatment, greenhouse and field trials were conducted on three maize development stages (2-, 4-, and 6-leaf stage). Visual estimations on crop vitality were compared to ground-based and airborne hyperspectral and multispectral sensors.

Results: The reduction of cyprosulfamide by 88% when applied as seed treatment did not significantly reduce maize biomass yields at the field. The crop deterioration in both trials was stronger in the cyprosulfamide seed treatments compared to the spray applications but was found to be transient in the field trial. The hyperspectral sensor and multispectral camera data correlated with R2 = 0.84 (CropSpec Vegetation Index) and R2 = 0.64 (Green Normalized Difference Vegetation Index).

Conclusion: The sensor-based collection of crop responses to treatments enables early, quantifiable and auditor-independent assessments. In particular, the airborne multispectral imagery assessment of field experiments provides more detailed and comprehensive information than visually collected data. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Keywords: UAV multispectral imagery; crop stress measurement; remote sensing; sensor fusion; spectral indices; spectrometer; weed management.

MeSH terms

  • Herbicides
  • Isoxazoles
  • Seeds
  • Zea mays*

Substances

  • Herbicides
  • Isoxazoles
  • isoxaflutole