Investigating the visual number form area: a replication study

R Soc Open Sci. 2019 Oct 30;6(10):182067. doi: 10.1098/rsos.182067. eCollection 2019 Oct.

Abstract

The influential triple-code model of number representation proposed that there are three distinct brain regions for three different numerical representations: verbal words, visual digits and abstract magnitudes. It was hypothesized that the region for visual digits, known as the number form area, would be in ventral occipitotemporal cortex (vOTC), near other visual category-specific regions, such as the visual word form area. However, neuroimaging investigations searching for a region that responds in a category-specific manner to the visual presentation of number symbols have yielded inconsistent results. Price & Ansari (Price, Ansari 2011 Neuroimage 57, 1205-1211) investigated whether any regions activated more in response to passively viewing digits in contrast with letters and visually similar nonsense symbols and identified a region in the left angular gyrus. By contrast, Grotheer et al. (Grotheer, Herrmann, Kovács 2016 J. Neurosci. 36, 88-97) found bilateral regions in vOTC which were more activated in response to digits than other stimuli categories while performing a one-back task. In the current study, we aimed to replicate the findings reported in Grotheer et al. with Price & Ansari's passive viewing task as this is the most stringent test of bottom-up, sensory-driven, category-specific perception. Moreover, we used the contrasts reported in both papers in order to test whether the discrepancy in findings could be attributed to the difference in analysis.

Keywords: number representation; numerical cognition; ventral occipitotemporal cortex.