Properties of quantum dots coupled to plasmons and optical cavities

J Chem Phys. 2019 Dec 7;151(21):210901. doi: 10.1063/1.5124392.

Abstract

Quantum electrodynamics is rapidly finding a set of new applications in thresholdless lasing, photochemistry, and quantum entanglement due to the development of sophisticated patterning techniques to couple nanoscale photonic emitters with photonic and plasmonic cavities. Colloidal and epitaxial semiconductor nanocrystals or quantum dots (QDs) are promising candidates for emitters within these architectures but are dramatically less explored in this role than are molecular emitters. This perspective reviews the basic physics of emitter-cavity coupling in the weak-to-strong coupling regimes, describes common architectures for these systems, and lists possible applications (in particular, photochemistry), with a focus on the advantages and issues associated with using QDs as the emitters.

Publication types

  • Review

MeSH terms

  • Optical Devices*
  • Photochemical Processes
  • Quantum Dots / chemistry*