Photo-Driven Self-Healing of Arbitrary Nondestructive Damage in Polyethylene-Based Nanocomposites

ACS Appl Mater Interfaces. 2020 Jan 8;12(1):1650-1657. doi: 10.1021/acsami.9b19440. Epub 2019 Dec 20.

Abstract

Polymer products with precise shape recovery behavior are highly desired for practical applications owing to excellent processability and mechanical properties compared with metallic or inorganic materials. Shape memory polymers (SMPs) provide a solution for this end, but the design and scalable fabrication of photothermal controllable SMPs with accurate, rapid, and repeatable recovery behaviors are still great challenges. In this work, polyurethane/sulfonated carbon nanotube (PU/S-CNT) composite particles are introduced into a cross-linked high-density polyethylene (HDPE) as a functional dispersed phase to realize photo-driven fast shape recovery in cheap polymer composite materials. It is found that microcracks can be induced by the PU/S-CNT composite particles during deformation, generating a particular microparticle in a microcrack (MC-MP) structure. The MC-MP microstructure significantly improves the photothermal conversion efficiency, thereby accelerating the photo-driven shape self-healing of arbitrary nondestructive material damage. It is also found that proper cross-linking of the matrix, HDPE, greatly improves the recovery performance of the materials. This strategy based on the MC-MP microstructure and cross-linked matrix is also instructive for designing new SMPs using other polymer materials.

Keywords: cross-linking; microcracks; photo-driven self-recovery; photothermal efficiency; shape memory polymer.