Array-Assisted SERS Microfluidic Chips for Highly Sensitive and Multiplex Gas Sensing

ACS Appl Mater Interfaces. 2020 Jan 8;12(1):1395-1403. doi: 10.1021/acsami.9b19358. Epub 2019 Dec 24.

Abstract

A novel kind of array-assisted surface-enhanced Raman spectroscopy (SERS) microfluidic chip (ArraySERS chip) is demonstrated for gas sensing, which has the advantages of both ultrahigh sensitivity and multiplex sensing ability. On the one hand, the introduction of a microstructured triangular array can greatly increase the multiple collision probability between gas molecules and sensing interfaces in the channel. Compared with traditional gas sensors using sealed boxes, where gaseous molecules move only by diffusion, the ArraySERS chip exhibits significantly improved sensitivity. On the other hand, a composite nanoparticle is fabricated as a SERS probe for reading out the fingerprint spectral data, which consists of metal-organic framework (MOF) materials [Zeolitic Imidazolate framework-8 (ZIF-8)] and Au@Ag nanocubes, as well as cysteamine (CA) that serves as the gas-capturing agent. The experimental results show that such a structure of the SERS probe can further increase the sensing ability because of better adsorption of ZIF-8 for gas and the lower SERS background of CA itself. In addition, the simultaneous detection of multiplex gases was easily performed according to their own intrinsic SERS signals. Taking aldehyde gas as a model of a typical air pollutant, trace and multicomponent detection was realized using the ArraySERS chip. The limit of detection value was as low as 1 ppb, which is 2 magnitudes lower than that obtained by traditional methods. This strategy can be well extended for the detection of universal gases and help unleash the potential of existing gas sensors, especially for samples at low concentrations in air.

Keywords: SERS; ZIF-8; array; gas sensing; microfluidic chip.