The microbially driven formation of siderite in salt marsh sediments

Geobiology. 2020 Mar;18(2):207-224. doi: 10.1111/gbi.12371. Epub 2019 Dec 8.

Abstract

We employ complementary field and laboratory-based incubation techniques to explore the geochemical environment where siderite concretions are actively forming and growing, including solid-phase analysis of the sediment, concretion, and associated pore fluid chemistry. These recently formed siderite concretions allow us to explore the geochemical processes that lead to the formation of this less common carbonate mineral. We conclude that there are two phases of siderite concretion growth within the sediment, as there are distinct changes in the carbon isotopic composition and mineralogy across the concretions. Incubated sediment samples allow us to explore the stability of siderite over a range of geochemical conditions. Our incubation results suggest that the formation of siderite can be very rapid (about two weeks or within 400 hr) when there is a substantial source of iron, either from microbial iron reduction or from steel material; however, a source of dissolved iron is not enough to induce siderite precipitation. We suggest that sufficient alkalinity is the limiting factor for siderite precipitation during microbial iron reduction while the lack of dissolved iron is the limiting factor for siderite formation if microbial sulfate reduction is the dominant microbial metabolism. We show that siderite can form via heated transformation (at temperature 100°C for 48 hr) of calcite and monohydrocalcite seeds in the presence of dissolved iron. Our transformation experiments suggest that the formation of siderite is promoted when carbonate seeds are present.

Keywords: calcite; mineralogy; nodule; siderite; sulfate-reducing bacteria; transformation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbonates
  • Ferric Compounds
  • Geologic Sediments
  • Oxidation-Reduction
  • Wetlands*

Substances

  • Carbonates
  • Ferric Compounds
  • siderite