Horizontal Transfer and Gene Loss Shaped the Evolution of Alpha-Amylases in Bilaterians

G3 (Bethesda). 2020 Feb 6;10(2):709-719. doi: 10.1534/g3.119.400826.

Abstract

The subfamily GH13_1 of alpha-amylases is typical of Fungi, but it is also found in some unicellular eukaryotes (e.g., Amoebozoa, choanoflagellates) and non-bilaterian Metazoa. Since a previous study in 2007, GH13_1 amylases were considered ancestral to the Unikonts, including animals, except Bilateria, such that it was thought to have been lost in the ancestor of this clade. The only alpha-amylases known to be present in Bilateria so far belong to the GH13_15 and 24 subfamilies (commonly called bilaterian alpha-amylases) and were likely acquired by horizontal transfer from a proteobacterium. The taxonomic scope of Eukaryota genomes in databases has been greatly increased ever since 2007. We have surveyed GH13_1 sequences in recent data from ca. 1600 bilaterian species, 60 non-bilaterian animals and also in unicellular eukaryotes. As expected, we found a number of those sequences in non-bilaterians: Anthozoa (Cnidaria) and in sponges, confirming the previous observations, but none in jellyfishes and in Ctenophora. Our main and unexpected finding is that such fungal (also called Dictyo-type) amylases were also consistently retrieved in several bilaterian phyla: hemichordates (deuterostomes), brachiopods and related phyla, some molluscs and some annelids (protostomes). We discuss evolutionary hypotheses possibly explaining the scattered distribution of GH13_1 across bilaterians, namely, the retention of the ancestral gene in those phyla only and/or horizontal transfers from non-bilaterian donors.

Keywords: Bilateria; alpha-amylase; annelids; brachiopods; bryozoans; gene loss; glycosyl hydrolase; hemichordates; horizontal gene transfer; introns; molluscs; phoronids.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Basidiomycota / genetics*
  • Basidiomycota / metabolism
  • Evolution, Molecular*
  • Gene Transfer, Horizontal*
  • Genes, Fungal
  • Introns
  • Phylogeny
  • Transformation, Genetic*
  • alpha-Amylases / genetics*

Substances

  • alpha-Amylases