Evaluating the Sensitivities and Efficacies of Fungicides with Different Modes of Action Against Phomopsis asparagi

Plant Dis. 2020 Feb;104(2):448-454. doi: 10.1094/PDIS-05-19-1040-RE. Epub 2019 Dec 3.

Abstract

Asparagus stem blight caused by Phomopsis asparagi is a major hindrance to asparagus production worldwide. Currently, fungicides are used to manage the disease in commercial production, but resistance to common fungicides has emerged in the wild population. In the present study, 132 isolates of P. asparagi collected from different provinces in China were tested for sensitivities to pyraclostrobin, tebuconazole, and fluazinam. We also determined the efficacies of six fungicides against P. asparagi. The frequency distributions of EC50 values of the isolates tested were unimodal, but the curves for pyraclostrobin and tebuconazole had long right-hand tails. The mean EC50 values for pyraclostrobin, tebuconazole, and fluazinam were 0.0426 ± 0.0029, 0.6041 ± 0.0416, and 0.0314 ± 0.0013 μg/ml, respectively. In addition, the EC50 values for pyraclostrobin were very similar with or without salicylhydroxamic acid (SHAM), 20 μg/ml, indicating that SHAM is not needed to determine the sensitivity of P. asparagi to pyraclostrobin when using the mycelial growth inhibition assay. In greenhouse assays, Merivon (42.4% fluxapyroxad plus pyraclostrobin SC), Frown-cide (500 g/liter fluazinam SC), Cabrio (250 g/liter pyraclostrobin EC), and Nativo (75% trifloxystrobin plus tebuconazole WG) showed excellent preventive efficacy against P. asparagi. And these fungicides were more effective before inoculation than when they were applied after inoculation (P < 0.05). Therefore, these fungicides should be applied prior to infection to control stem blight. In field trials, Frown-cide, Merivon, Nativo, and Cabrio also performed good control effects, ranging from 75.2 to 86.0% in 2017 and 75.4 to 87.1% in 2018. We demonstrated that Frown-cide, Merivon, Nativo, and Cabrio had considerable potential to manage asparagus stem blight. In addition, rotations of these fungicides are essential for precluding or delaying the development of resistance and for controlling the disease.

Keywords: Phomopsis asparagi; asparagus stem blight; baseline sensitivity; control efficacy; diverse fungicides.

MeSH terms

  • Ascomycota*
  • Asparagus Plant*
  • China
  • Fungicides, Industrial*
  • Mitosporic Fungi*

Substances

  • Fungicides, Industrial