Systematic review of differential methylation in rare ophthalmic diseases

BMJ Open Ophthalmol. 2019 Nov 13;4(1):e000342. doi: 10.1136/bmjophth-2019-000342. eCollection 2019.

Abstract

Rare ophthalmic diseases have a devastating impact on a patient's vision and consequently negatively affect their independence, ability to work and overall quality of life. Methylation is an important emerging biomarker of disease and may improve understanding of rare ophthalmic disorders. This systematic review sought to identify and evaluate literature on methylation and rare ophthalmic disease. MEDLINE, EMBASE, PubMed, Cochrane Database of Systematic Reviews and grey literature resources were searched for publications prior to 20 August 2019. Articles written in English which featured key terms such as 'methylation' and rare ophthalmic diseases were included. Titles, abstracts, keywords and full texts of publications were screened, as well as reference lists for reverse citations and Web of Science 'cited reference search' for forward citation searching. Study characteristics were extracted, and methodological rigour appraised using a standardised template. Fourteen articles were selected for full inclusion. Rare ophthalmic conditions include congenital fibrosis of extraocular muscles, retinitis pigmentosa, Fuchs endothelial corneal dystrophy, granular corneal dystrophy, choroideraemia, brittle cornea syndrome, retinopathy of prematurity, keratoconus and congenital cataracts. Outcomes include identification of methylation as contributor to disease and identification of potential novel therapeutic targets. The studies included were heterogeneous with no scope for meta-analysis following review; a narrative synthesis was undertaken. Differential methylation has been identified in a small number of rare ophthalmic diseases and few studies have been performed to date. Further multiomic research will improve understanding of rare eye diseases and hopefully lead to improved provision of diagnostic/prognostic biomarkers, and help identify novel therapeutic targets.

Keywords: choroid; cornea; degeneration; genetics; public health; retina; vision.

Publication types

  • Review