Optimizing the Management of Cadmium Bioremediation Capacity of Metal-Resistant Pseudomonas sp. Strain Al-Dhabi-126 Isolated from the Industrial City of Saudi Arabian Environment

Int J Environ Res Public Health. 2019 Nov 29;16(23):4788. doi: 10.3390/ijerph16234788.

Abstract

In this study, 23 bacterial strains were isolated from a Cadmium (Cd) contaminated soil in the industrial city, Riyadh of Saudi Arabia. Among these isolates six strains were found to withstand cadmium contamination and grow well. From the six isolates Pseudomonas sp. strain Al-Dhabi-122-127 were found to resist cadmium toxicity to a higher level. The isolates were subjected to biochemical and 16S rDNA gene sequence characterization to confirm their identification. The bacterial strain Al-Dhabi-124 showed 1.5 times higher Cd-degrading activity than Al-Dhabi-122 and Al-Dhabi-123, and Al-Dhabi-126 exhibited 3.5 times higher Cd-degrading activity, higher than the other strains. An atomic absorption spectrophotometer study showed that the strain Al-Dhabi-126 absorbed Cd, and that the bacterial strain Al-Dhabi-126 was found to tolerate cadmium level up to 2100 µg/mL. The bacterial strain Al-Dhabi-126 showed a maximum Cd removal efficacy at pH between 6.0 and 8.0. The efficacy decreased sharply after an increase in pH (9.0). An optimum temperature of 50 °C and pH 6.0 were found to be effective for the Cd removal process by the isolate. The study indicated that the bacterial strain Al-Dhabi-126 can be used effectively for the bioremediation of heavy metals like cadmium, a major toxic pollutant in industrial effluents.

Keywords: bacteria bioremediation; biosorption; cadmium; heavy metal; metal resistant.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodegradation, Environmental
  • Cadmium / metabolism*
  • Pseudomonas / metabolism*
  • Saudi Arabia
  • Soil / chemistry
  • Soil Microbiology
  • Soil Pollutants / metabolism*

Substances

  • Soil
  • Soil Pollutants
  • Cadmium