Light-Guided Surface Plasmonic Bubble Movement via Contact Line De-Pinning by In-Situ Deposited Plasmonic Nanoparticle Heating

ACS Appl Mater Interfaces. 2019 Dec 26;11(51):48525-48532. doi: 10.1021/acsami.9b16067. Epub 2019 Dec 10.

Abstract

Precise spatiotemporal control of surface bubble movement can benefit a wide range of applications like high-throughput drug screening, combinatorial material development, microfluidic logic, colloidal and molecular assembly, and so forth. In this work, we demonstrate that surface bubbles on a solid surface are directed by a laser to move at high speeds (>1.8 mm/s), and we elucidate the mechanism to be the depinning of the three-phase contact line (TPCL) by rapid plasmonic heating of nanoparticles (NPs) deposited in situ during bubble movement. On the basis of our observations, we deduce a stick-slip mechanism based on asymmetric fore-aft plasmonic heating: local evaporation at the front TPCL due to plasmonic heating depins and extends the front TPCL, followed by the advancement of the trailing TPCL to resume a spherical bubble shape to minimize surface energy. The continuous TPCL drying during bubble movement also enables well-defined contact line deposition of NP clusters along the moving path. Our finding is beneficial to various microfluidics and pattern writing applications.

Keywords: microbubbles; nanoparticles; plasmonic heating; pulsed laser; stick−slip motion.