Programmed ubiquitin acetylation using genetic code expansion reveals altered ubiquitination patterns

FEBS Lett. 2020 Apr;594(7):1226-1234. doi: 10.1002/1873-3468.13702. Epub 2019 Dec 18.

Abstract

Ubiquitination is a post-translational modification (PTM) capable of being regulated by other PTMs, including acetylation. However, the biological consequences of acetylated ubiquitin (acUb) variants are poorly understood, due to their transient nature in vivo and poor characterization in vitro. Since Ub is known to be acetylated in human cells, we produced all possible acUb variants using genetic code expansion. We also developed a protocol that optimizes acetyl-lysine addition to minimize mistranslated proteins and maximize site-specific acUb protein production. Purified acUb proteins were used in pilot ubiquitination assays and found to be competent with IpaH3CT and RNF8 E3 ligases. Overall, this work provides an optimized method to express and purify all acetyl-lysine variants for ubiquitin and shows these proteins can be used to identify potential unique ubiquitination patterns.

Keywords: acetyl-lysine; orthogonal translation; post-translational modification; ubiquitination.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation
  • DNA-Binding Proteins / metabolism
  • Genetic Code*
  • Humans
  • Lysine / genetics
  • Lysine / metabolism
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • Ubiquitin / chemistry
  • Ubiquitin / genetics*
  • Ubiquitin / metabolism*
  • Ubiquitin-Activating Enzymes / metabolism
  • Ubiquitin-Conjugating Enzymes / metabolism
  • Ubiquitin-Protein Ligases / metabolism
  • Ubiquitination / genetics*

Substances

  • DNA-Binding Proteins
  • RNF8 protein, human
  • Saccharomyces cerevisiae Proteins
  • UBA1 protein, human
  • Ubiquitin
  • UBE2D1 protein, human
  • Ubiquitin-Conjugating Enzymes
  • Ubiquitin-Protein Ligases
  • Ubiquitin-Activating Enzymes
  • Lysine