Microstructural Evolution and Mechanical Properties of Friction Stir Welded Butt Joints of 5A06 Alloy Ultra-Thin Sheets

Materials (Basel). 2019 Nov 26;12(23):3906. doi: 10.3390/ma12233906.

Abstract

Ultra-thin plates have great potential for applications in aircraft skin, the packaging industry, and packaging of electronic products. Herein, 1 mm-thick 5A06 Al alloy was welded with friction stir welding. The microstructural evolution of the welds was investigated in detail with optical microscopy, scanning electron microscopy, and electron backscatter diffraction. The results showed that the friction stir welds of 1 mm-thick 5A06 Al alloy were well formed without obvious defect and with a minimum thickness reduction of 0.025 mm. Further, the grain size and the proportion of low-angle grain boundaries decreased with decreasing welding speed, because of the increasing degree of dynamic recrystallization. Among all of the welded joints, the welding speed of 100 mm/min yielded the smallest grain size and the highest proportion of high-angle grain boundaries, and thus the best mechanical properties. Specifically, the tensile strength of the joint was greater than that of the base material, while the elongation reached 80.83% of the base material.

Keywords: 5A06; dynamic recrystallization; friction stir welding; mechanical properties; thin plate.