Axisymmetric compact finite-difference lattice Boltzmann method for blood flow simulations

Phys Rev E. 2019 Oct;100(4-1):043307. doi: 10.1103/PhysRevE.100.043307.

Abstract

An axisymmetric compact finite-difference lattice Boltzmann method is proposed to simulate both Newtonian and non-Newtonian flow of blood through a lumen. The curvature of the arteries could be accurately resolved using body-fitted mesh owing to the proposed finite-difference formulation. The axisymmetric nature of the flow, as well as the non-Newtonian nature of blood, are incorporated into the lattice Boltzmann equation using separate source terms. Using Chapman-Enskog expansion it is shown that the resulting lattice Boltzmann equation with these additional source terms recovers the macroscopic axisymmetric hydrodynamic equations. The solver is verified for (1) steady inflow of a Newtonian fluid through a stenosed lumen, (2) temporally developing pulsatile flow (Womersley flow) through a straight lumen with Newtonian fluid, and (3) steady inflow of a non-Newtonian fluid through a straight lumen. The solver is then applied to simulate the steady flow of a non-Newtonian fluid through a stenosed lumen, and it was found that a smaller recirculation zone and lower WSS values are obtained when compared with the flow of a Newtonian fluid. The capability of the solver to simulate spatially developing (velocity-driven) pulsatile flow is then demonstrated by simulating physiological pulsatile flow through an axisymmetric abdominal aortic aneurysm. From this simulation, the cycle-averaged wall shear stress is observed to have a steep gradient going from a minimum (negative) to a maximum (positive) value towards the distal end of the aneurysm, which is prone to the risk of rupture. An iterative procedure to select the geometric and flow parameters for unsteady inflow condition in the lattice Boltzmann method framework is demonstrated that accurately resolves all the timescales to achieve incompressibility. Overall, the present solver seems to be promising to simulate axisymmetric flow of blood with steady and pulsatile inflows while considering the blood rheology.

MeSH terms

  • Blood Circulation*
  • Models, Biological*
  • Pulsatile Flow
  • Stress, Mechanical