Adaptive evolution reveals a tradeoff between growth rate and oxidative stress during naphthoquinone-based aerobic respiration

Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25287-25292. doi: 10.1073/pnas.1909987116. Epub 2019 Nov 25.

Abstract

Evolution fine-tunes biological pathways to achieve a robust cellular physiology. Two and a half billion years ago, rapidly rising levels of oxygen as a byproduct of blooming cyanobacterial photosynthesis resulted in a redox upshift in microbial energetics. The appearance of higher-redox-potential respiratory quinone, ubiquinone (UQ), is believed to be an adaptive response to this environmental transition. However, the majority of bacterial species are still dependent on the ancient respiratory quinone, naphthoquinone (NQ). Gammaproteobacteria can biosynthesize both of these respiratory quinones, where UQ has been associated with aerobic lifestyle and NQ with anaerobic lifestyle. We engineered an obligate NQ-dependent γ-proteobacterium, Escherichia coli ΔubiC, and performed adaptive laboratory evolution to understand the selection against the use of NQ in an oxic environment and also the adaptation required to support the NQ-driven aerobic electron transport chain. A comparative systems-level analysis of pre- and postevolved NQ-dependent strains revealed a clear shift from fermentative to oxidative metabolism enabled by higher periplasmic superoxide defense. This metabolic shift was driven by the concerted activity of 3 transcriptional regulators (PdhR, RpoS, and Fur). Analysis of these findings using a genome-scale model suggested that resource allocation to reactive oxygen species (ROS) mitigation results in lower growth rates. These results provide a direct elucidation of a resource allocation tradeoff between growth rate and ROS mitigation costs associated with NQ usage under oxygen-replete condition.

Keywords: genome-scale model; naphthoquinone; oxidative stress; respiration.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aerobiosis
  • Biological Evolution
  • Electron Transport
  • Escherichia coli / genetics
  • Escherichia coli / growth & development*
  • Escherichia coli / metabolism*
  • Naphthoquinones / metabolism*
  • Oxidative Stress*
  • Oxo-Acid-Lyases / genetics
  • Oxo-Acid-Lyases / metabolism
  • Oxygen / metabolism*
  • Reactive Oxygen Species / metabolism

Substances

  • Naphthoquinones
  • Reactive Oxygen Species
  • Oxo-Acid-Lyases
  • chorismate pyruvate lyase
  • Oxygen