Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean

Nat Commun. 2019 Nov 22;10(1):5303. doi: 10.1038/s41467-019-13318-8.

Abstract

Glycerol-3-phosphate (G3P) is a well-known mobile regulator of systemic acquired resistance (SAR), which provides broad spectrum systemic immunity in response to localized foliar pathogenic infections. We show that G3P-derived foliar immunity is also activated in response to genetically-regulated incompatible interactions with nitrogen-fixing bacteria. Using gene knock-down we show that G3P is essential for strain-specific exclusion of non-desirable root-nodulating bacteria and the associated foliar pathogen immunity in soybean. Grafting studies show that while recognition of rhizobium incompatibility is root driven, bacterial exclusion requires G3P biosynthesis in the shoot. Biochemical analyses support shoot-to-root transport of G3P during incompatible rhizobia interaction. We describe a root-shoot-root signaling mechanism which simultaneously enables the plant to exclude non-desirable nitrogen-fixing rhizobia in the root and pathogenic microbes in the shoot.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Gene Knockdown Techniques
  • Glycerophosphates / immunology*
  • Glycerophosphates / metabolism
  • Glycine max / immunology*
  • Glycine max / metabolism
  • Plant Immunity / immunology*
  • Plant Proteins / genetics*
  • Plant Proteins / metabolism
  • Plant Roots / immunology*
  • Plant Roots / metabolism
  • Plant Shoots / immunology*
  • Plant Shoots / metabolism
  • Rhizobium / immunology*
  • Rhizobium / metabolism
  • Signal Transduction
  • Symbiosis / immunology*

Substances

  • Glycerophosphates
  • Plant Proteins
  • alpha-glycerophosphoric acid