Anomalous magnetoresistance due to longitudinal spin fluctuations in a Jeff = 1/2 Mott semiconductor

Nat Commun. 2019 Nov 22;10(1):5301. doi: 10.1038/s41467-019-13271-6.

Abstract

As a hallmark of electronic correlation, spin-charge interplay underlies many emergent phenomena in doped Mott insulators, such as high-temperature superconductivity, whereas the half-filled parent state is usually electronically frozen with an antiferromagnetic order that resists external control. We report on the observation of a positive magnetoresistance that probes the staggered susceptibility of a pseudospin-half square-lattice Mott insulator built as an artificial SrIrO3/SrTiO3 superlattice. Its size is particularly large in the high-temperature insulating paramagnetic phase near the Néel transition. This magnetoresistance originates from a collective charge response to the large longitudinal spin fluctuations under a linear coupling between the external magnetic field and the staggered magnetization enabled by strong spin-orbit interaction. Our results demonstrate a magnetic control of the binding energy of the fluctuating particle-hole pairs in the Slater-Mott crossover regime analogous to the Bardeen-Cooper-Schrieffer-to-Bose-Einstein condensation crossover of ultracold-superfluids.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.