Truncated TALE-FP as DNA Staining Dye in a High-salt Buffer

Sci Rep. 2019 Nov 20;9(1):17197. doi: 10.1038/s41598-019-53722-0.

Abstract

Large DNA molecules are a promising platform for in vitro single-molecule biochemical analysis to investigate DNA-protein interactions by fluorescence microscopy. For many studies, intercalating fluorescent dyes have been primary DNA staining reagents, but they often cause photo-induced DNA breakage as well as structural deformation. As a solution, we previously developed several fluorescent-protein DNA-binding peptides or proteins (FP-DBP) for reversibly staining DNA molecules without structural deformation or photo-induced damage. However, they cannot stain DNA in a condition similar to a physiological salt concentration that most biochemical reactions require. Given these concerns, here we developed a salt-tolerant FP-DBP: truncated transcription activator-like effector (tTALE-FP), which can stain DNA up to 100 mM NaCl. Moreover, we found an interesting phenomenon that the tTALE-FP stained DNA evenly in 1 × TE buffer but showed AT-rich specific patterns from 40 mM to 100 mM NaCl. Using an assay based on fluorescence resonance energy transfer, we demonstrated that this binding pattern is caused by a higher DNA binding affinity of tTALE-FP for AT-rich compared to GC-rich regions. Finally, we used tTALE-FP in a single molecule fluorescence assay to monitor real-time restriction enzyme digestion of single DNA molecules. Altogether, our results demonstrate that this protein can provide a useful alternative as a DNA stain over intercalators.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA / chemistry*
  • DNA / metabolism*
  • DNA-Binding Proteins / chemistry
  • DNA-Binding Proteins / metabolism*
  • Fluorescence
  • Fluorescence Resonance Energy Transfer
  • Fluorescent Dyes / chemistry*
  • Humans
  • Intercalating Agents / chemistry
  • Intercalating Agents / metabolism*
  • Microscopy, Fluorescence
  • Single Molecule Imaging / methods
  • Staining and Labeling / methods*
  • Transcription Activator-Like Effectors / chemistry
  • Transcription Activator-Like Effectors / metabolism*

Substances

  • DNA-Binding Proteins
  • Fluorescent Dyes
  • Intercalating Agents
  • Transcription Activator-Like Effectors
  • DNA