Supercrystallography-Based Decoding of Structure and Driving Force of Nanocrystal Assembly

Materials (Basel). 2019 Nov 17;12(22):3771. doi: 10.3390/ma12223771.

Abstract

Nanocrystal (NC) assembly appears as one promising method towards the controllable design and fabrication of advanced materials with desired property and functionality. The achievement of a "materials-by-design" requires not only a primary structural decoding of NC assembled supercrystal at a wide range of length scales, but also an improved understanding of the interactions and changeable roles of various driving forces over the course of nucleation and growth of NC superlattice. The recent invention of a synchrotron-based X-ray supercrystallographic approach makes it feasible to uncover the structural details of NC-assembled supercrystal at unprecedented levels from atomic through nano to mesoscale. Such structural documentations can be used to trace how various driving forces interact in a competitive way and thus change relatively in strength to govern the formation of individual superlattices under certain circumstances. This short review makes use of four single supercrystals typically made up of spherical, truncate, cubic and octahedral NCs, respectively, and provides a comparable description and a reasonable analysis of the use of a synchrotron-based supercrystallographic approach to reveal various degrees of translational and orientational ordering of NCs within various superlattices. In the connection of observed structural aspects with controlled environments of NC assembly, we further address how various driving forces interact each other to develop relatively changeable roles upon variation of the NC shape to respond to the nucleation and growth of various superlattices. With the guidance of such gained insights, we provide additional examples to illustrate how realistic environments are designed into delicate control of NC assembly to achieve particular interactions between NCs towards harvesting superlattice with NC translational symmetry and atomically crystallographic orientation as desired.

Keywords: driving forces; interaction and environment; materials design; nanocrystal assembly; supercrystal; supercrystallography; superlattice; translational and orientational ordering.

Publication types

  • Review