Ag Ion Soldering: An Emerging Tool for Sub-nanomeric Plasmon Coupling and Beyond

Acc Chem Res. 2019 Dec 17;52(12):3442-3454. doi: 10.1021/acs.accounts.9b00463. Epub 2019 Nov 19.

Abstract

Self-assembly represents probably the most flexible way to construct metastructured materials and devices from a wealth of colloidal building blocks with synthetically controllable sizes, shapes, and elemental compositions. In principle, surface capping is unavoidable during the synthesis of nanomaterials with well-defined geometry and stability. The ligand layer also endows inorganic building blocks with molecular recognition ability responsible for their assembly into desired structures. In the case of plasmonic nanounits, precise positioning of them in a nanomolecule or an ordered nanoarray provides a chance to shape their electrodynamic behaviors and thereby assists experimental demonstration of modern nanoplasmonics toward practical uses. Despite previous achievements in bottom-up nanofabrication, a big challenge exists toward strong coupling and facile charge transfer between adjacent nanounits in an assembly. This difficulty has impeded a functional development of plasmonic nanoassemblies. The weakened interparticle coupling originates from the electrostatic and steric barriers of ionic/molecular adsorbates to guarantee a good colloidal stability. Such a dilemma is rooted in fundamental colloidal science, which lacks an effective solution. During the past several years, a chemical tool termed Ag ion soldering (AIS) has been developed to overcome the above situation toward functional colloidal nanotechnology. In particular, a dimeric assembly of plasmonic nanoparticles has been taken as an ideal model to study plasmonic coupling and interparticle charge transfer. This Account starts with a demonstration of the chemical mechanism of AIS, followed by a verification of its workability in various self-assembly systems. A further use of AIS to realize postsynthetic coupling of DNA-directed nanoparticle clusters evidences its compatibility with DNA nanotechnology. Benefiting from the sub-nanometer interparticle gap achieved by AIS, a conductive pathway is established between two nanoparticles in an assembly. Accordingly, light-driven charge transfer between the conductively bridged plasmonic units is realized with highly tunable resonance frequencies. These situations have been demonstrated by thermal/photothermal sintering of silica-isolated nanoparticle dimers as well as gap-specific electroless gold/silver deposition. The regioselective silver deposition is then combined with galvanic replacement to obtain catalytically active nanofoci (plasmonic nanogaps). The resulting structures are useful for real time and on-site Raman spectroscopic tracking of chemical reactions in the plasmonic hotspots (nanogaps) as well as for study of plasmon-mediated/field-enhanced catalysis. The Account is concluded by a deeper insight into the chemical mechanism of AIS and its adaption to conformation-rich structures. Finally, AIS-enabled functional pursuits are suggested for self-assembled materials with strongly coupled and easily reshapable physicochemical properties.

Publication types

  • Research Support, Non-U.S. Gov't