Bone-inspired microarchitectures achieve enhanced fatigue life

Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24457-24462. doi: 10.1073/pnas.1905814116. Epub 2019 Nov 18.

Abstract

Microarchitectured materials achieve superior mechanical properties through geometry rather than composition. Although ultralightweight microarchitectured materials can have high stiffness and strength, application to durable devices will require sufficient service life under cyclic loading. Naturally occurring materials provide useful models for high-performance materials. Here, we show that in cancellous bone, a naturally occurring lightweight microarchitectured material, resistance to fatigue failure is sensitive to a microarchitectural trait that has negligible effects on stiffness and strength-the proportion of material oriented transverse to applied loads. Using models generated with additive manufacturing, we show that small increases in the thickness of elements oriented transverse to loading can increase fatigue life by 10 to 100 times, far exceeding what is expected from the associated change in density. Transversely oriented struts enhance resistance to fatigue by acting as sacrificial elements. We show that this mechanism is also present in synthetic microlattice structures, where fatigue life can be altered by 5 to 9 times with only negligible changes in density and stiffness. The effects of microstructure on fatigue life in cancellous bone and lattice structures are described empirically by normalizing stress in traditional stress vs. life (S-N) curves by √ψ, where ψ is the proportion of material oriented transverse to load. The mechanical performance of cancellous bone and microarchitectured materials is enhanced by aligning structural elements with expected loading; our findings demonstrate that this strategy comes at the cost of reduced fatigue life, with consequences to the use of microarchitectured materials in durable devices and to human health in the context of osteoporosis.

Keywords: additive manufacturing; bone; microarchitecture; microarchitectured materials; osteoporosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Biomechanical Phenomena
  • Biomimetic Materials / chemistry*
  • Compressive Strength
  • Elastic Modulus
  • Fatigue*
  • Female
  • Finite Element Analysis
  • Humans
  • Male
  • Methacrylates
  • Middle Aged
  • Models, Theoretical
  • Polyurethanes
  • Porosity
  • Tensile Strength
  • Thoracic Vertebrae / chemistry*
  • Thoracic Vertebrae / diagnostic imaging
  • Thoracic Vertebrae / physiology*
  • Weight-Bearing
  • X-Ray Microtomography

Substances

  • Methacrylates
  • Polyurethanes
  • urethanetrimethacrylate