Potential modulations in flatland: near-infrared sensitization of MoS2 phototransistors by a solvatochromic dye directly tethered to sulfur vacancies

Sci Rep. 2019 Nov 13;9(1):16682. doi: 10.1038/s41598-019-53186-2.

Abstract

Near-infrared sensitization of monolayer MoS2 is here achieved via the covalent attachment of a novel heteroleptic nickel bis-dithiolene complex into sulfur vacancies in the MoS2 structure. Photocurrent action spectroscopy of the sensitized films reveals a discreet contribution from the sensitizer dye centred around 1300 nm (0.95 eV), well below the bandgap of MoS2 (2.1 eV), corresponding to the excitation of the monoanionic dithiolene complex. A mechanism of conductivity enhancement is proposed based on a photo-induced flattening of the corrugated energy landscape present at sulfur vacancy defect sites within the MoS2 due to a dipole change within the dye molecule upon photoexcitation. This method of sensitization might be readily extended to other functional molecules that can impart a change to the dielectric environment at the MoS2 surface under stimulation, thereby extending the breadth of detector applications for MoS2 and other transition metal dichalcogenides.