G-quadruplex structures trigger RNA phase separation

Nucleic Acids Res. 2019 Dec 16;47(22):11746-11754. doi: 10.1093/nar/gkz978.

Abstract

Liquid-liquid phase separation plays an important role in a variety of cellular processes, including the formation of membrane-less organelles, the cytoskeleton, signalling complexes, and many other biological supramolecular assemblies. Studies on the molecular basis of phase separation in cells have focused on protein-driven phase separation. In contrast, there is limited understanding on how RNA specifically contributes to phase separation. Here, we described a phase-separation-like phenomenon that SHORT ROOT (SHR) RNA undergoes in cells. We found that an RNA G-quadruplex (GQ) forms in SHR mRNA and is capable of triggering RNA phase separation under physiological conditions, suggesting that GQs might be responsible for the formation of the SHR phase-separation-like phenomenon in vivo. We also found the extent of GQ-triggered-phase-separation increases on exposure to conditions which promote GQ. Furthermore, GQs with more G-quartets and longer loops are more likely to form phase separation. Our studies provide the first evidence that RNA can adopt structural motifs to trigger and/or maintain the specificity of RNA-driven phase separation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis Proteins / chemistry
  • Arabidopsis Proteins / genetics
  • G-Quadruplexes*
  • Liquid-Liquid Extraction
  • Nucleic Acid Conformation
  • Phase Transition*
  • Plant Roots / chemistry
  • RNA / chemistry*
  • RNA / isolation & purification
  • RNA / physiology
  • RNA, Messenger / chemistry
  • RNA, Messenger / isolation & purification
  • Transcription Factors / chemistry
  • Transcription Factors / genetics

Substances

  • Arabidopsis Proteins
  • RNA, Messenger
  • SCR protein, Arabidopsis
  • SHORT ROOT protein, Arabidopsis
  • Transcription Factors
  • RNA